Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.

Identifieur interne : 002171 ( Main/Exploration ); précédent : 002170; suivant : 002172

Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.

Auteurs : Michael D. Madritch [États-Unis] ; Clayton C. Kingdon ; Aditya Singh ; Karen E. Mock ; Richard L. Lindroth ; Philip A. Townsend

Source :

RBID : pubmed:24733949

Descripteurs français

English descriptors

Abstract

Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.

DOI: 10.1098/rstb.2013.0194
PubMed: 24733949
PubMed Central: PMC3983929


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.</title>
<author>
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Appalachian State University, , Boone, NC 28608, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Appalachian State University, , Boone, NC 28608</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kingdon, Clayton C" sort="Kingdon, Clayton C" uniqKey="Kingdon C" first="Clayton C" last="Kingdon">Clayton C. Kingdon</name>
</author>
<author>
<name sortKey="Singh, Aditya" sort="Singh, Aditya" uniqKey="Singh A" first="Aditya" last="Singh">Aditya Singh</name>
</author>
<author>
<name sortKey="Mock, Karen E" sort="Mock, Karen E" uniqKey="Mock K" first="Karen E" last="Mock">Karen E. Mock</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Townsend, Philip A" sort="Townsend, Philip A" uniqKey="Townsend P" first="Philip A" last="Townsend">Philip A. Townsend</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24733949</idno>
<idno type="pmid">24733949</idno>
<idno type="doi">10.1098/rstb.2013.0194</idno>
<idno type="pmc">PMC3983929</idno>
<idno type="wicri:Area/Main/Corpus">002230</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002230</idno>
<idno type="wicri:Area/Main/Curation">002230</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002230</idno>
<idno type="wicri:Area/Main/Exploration">002230</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.</title>
<author>
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Appalachian State University, , Boone, NC 28608, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Appalachian State University, , Boone, NC 28608</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kingdon, Clayton C" sort="Kingdon, Clayton C" uniqKey="Kingdon C" first="Clayton C" last="Kingdon">Clayton C. Kingdon</name>
</author>
<author>
<name sortKey="Singh, Aditya" sort="Singh, Aditya" uniqKey="Singh A" first="Aditya" last="Singh">Aditya Singh</name>
</author>
<author>
<name sortKey="Mock, Karen E" sort="Mock, Karen E" uniqKey="Mock K" first="Karen E" last="Mock">Karen E. Mock</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Townsend, Philip A" sort="Townsend, Philip A" uniqKey="Townsend P" first="Philip A" last="Townsend">Philip A. Townsend</name>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Plant (chemistry)</term>
<term>DNA, Plant (genetics)</term>
<term>Discriminant Analysis (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Genetic Variation (genetics)</term>
<term>Genotype (MeSH)</term>
<term>Lignin (analysis)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>North America (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Satellite Imagery (methods)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (composition chimique)</term>
<term>ADN des plantes (génétique)</term>
<term>Amérique du Nord (MeSH)</term>
<term>Analyse discriminante (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Imagerie satellitaire (méthodes)</term>
<term>Lignine (analyse)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Sol (composition chimique)</term>
<term>Variation génétique (génétique)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Plant</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Variation</term>
<term>Microsatellite Repeats</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Répétitions microsatellites</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Satellite Imagery</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Imagerie satellitaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Discriminant Analysis</term>
<term>Ecosystem</term>
<term>Genotype</term>
<term>North America</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amérique du Nord</term>
<term>Analyse discriminante</term>
<term>Génotype</term>
<term>Microbiologie du sol</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24733949</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>369</Volume>
<Issue>1643</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.</ArticleTitle>
<Pagination>
<MedlinePgn>20130194</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2013.0194</ELocationID>
<Abstract>
<AbstractText>Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Madritch</LastName>
<ForeName>Michael D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Appalachian State University, , Boone, NC 28608, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kingdon</LastName>
<ForeName>Clayton C</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Aditya</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mock</LastName>
<ForeName>Karen E</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Townsend</LastName>
<ForeName>Philip A</ForeName>
<Initials>PA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016002" MajorTopicYN="N">Discriminant Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009656" MajorTopicYN="N">North America</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063809" MajorTopicYN="N">Satellite Imagery</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">above- and below-ground linkages</Keyword>
<Keyword MajorTopicYN="N">intraspecific diversity</Keyword>
<Keyword MajorTopicYN="N">plant chemistry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24733949</ArticleId>
<ArticleId IdType="pii">rstb.2013.0194</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2013.0194</ArticleId>
<ArticleId IdType="pmc">PMC3983929</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 2000 Jun;15(6):238-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genet. 2003 May;112(5-6):581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12607117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Jul;13(7):2101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 11;304(5677):1629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Nov;91(3):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Jun;11(6):609-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Oct;11(10):1065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):187-198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4827-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 May;160(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 May 27;4(5):e5695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19479086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jun;186(4):795-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):375-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21083563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Jan;37(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):999-1012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):950-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21374832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Mar;98(3):572-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Jun;92(6):1226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21797151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Jul;92(7):1385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21870611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Aug;92(8):1573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21905424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22322002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Sep;15(9):1058-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22642621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 06;486(7401):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 15;336(6087):1401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22700920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23119006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2013 Feb;405(4):1333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23472003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Jun;3(6):1692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23789078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Sep 6;341(6150):1100-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Jun;15(6):1795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2011 Mar;4(2):326-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Nov;112(4):492-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1967 Feb;27(2):209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6018555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Kingdon, Clayton C" sort="Kingdon, Clayton C" uniqKey="Kingdon C" first="Clayton C" last="Kingdon">Clayton C. Kingdon</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Mock, Karen E" sort="Mock, Karen E" uniqKey="Mock K" first="Karen E" last="Mock">Karen E. Mock</name>
<name sortKey="Singh, Aditya" sort="Singh, Aditya" uniqKey="Singh A" first="Aditya" last="Singh">Aditya Singh</name>
<name sortKey="Townsend, Philip A" sort="Townsend, Philip A" uniqKey="Townsend P" first="Philip A" last="Townsend">Philip A. Townsend</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002171 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002171 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24733949
   |texte=   Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24733949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020